PHOTOSÝNTHESIS OF SUPERCONDUCTIVITÝ

In Collaboration with

T. Gredig, G. Nieva, J. Guimpel, J. Hasen, A. Hoffmann UCSD, La Jolla, Ca E. Osquiguil, Y. Bruynseraede Katholieke Universiteit, Leuven, Belgium T. Endo Mie University, Japan Z. F. Ren, J. Y. Lao, and J. H. Wang SUNY, Buffalo, NY A.Gilabert **U. of Nice, France** F. Schmidl, P. Seidel Friedrich-Schiller-Universität, Jena, Germany V. Peña, J. Santamaria Universidad Complutense, Madrid, Spain

AFOSR, NSF, DOE

Philosophy 1

- It is the speakers responsibility to prove that (s)he is correct
- It is not the audience's responsibility to prove that (s)he is wrong

ASK QUESTIONS

Synthesis is purposeful execution of chemical reactions in order to get a product, or several products. This happens by physical and chemical manipulations usually involving one or more reactions.

WIKIPEDIA

Photosynthesis is the process of converting light energy to chemical demonstrations it in the bonds of sugar.

My high-school Biology Prof.

MOTIVATION Superconductors

- Conventional
 - * Nonequilibrium
 - * Relaxation Properties
 - * New Properties
- Unconventional
 - * Nonequilibrium
 - * Relaxation Properties
 - * Doping

NORTHWESTERN UNIVERSITY

PHOTOEXCITATION IN SUPERCONDUCTORS

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Physics

Ву

IVAN SCHULLER

Evanston, Illinois

June 1976

8

Basic Research=Surprises

CONVENTIONAL SUPERCONDUCTORS

Resistivity

• Follows the light

Similar to heating

Time

Figure I-1 Laser output (upper curve) and sample resistance at two temperatures (lower curves) as a function of time for a lead (Pb) film.³

Relaxation Time -Measurement

CRITICAL SLOWING DOWN

Axation time τ versus the reduced tempersolid data points are the relaxation times in two different samples. The open squares quasiparticle lifetimes which are scaled as exin the text. The inset shows the temperature adence of the equilbrium energy gap and the solid is the BCS prediction.

I. K. Schuller and K. E. Gray, PRL36, 429(1976)

NEW (?) PROPERTIES

Figure I-6 Resistivity as a function of temperature before and after illumination for a CdS-In film.⁷

Figure I-5 Electron microscope picture of an In layer deposited on a CdS layer. Notice the small inter-island spacing between the grains of In.⁷

Easily Understood

G. Deutcher, A. Barone 1970s

Philosophy 2

- It is your responsibility to search the literature
- Nothing resembles as much a new effect as a mistake

PREVIOUS WORK

EFFECT OF LIGHT

Conventional Superconductors

Enhanced Coupling of Grains"Heating"

Ceramic Superconductors

AHA !!!!!!

March Meeting 1987-Woodstock

WHERE ARE THE ATOMS!

OXYGENS ARE PRESENT -> NEED NEUTRON DIFFRACTION

• MEASURE 567 REFLECTIONS .

USE 27 ADJUSTABLE PARAMETERS
RIETVELD REFINEMENT

POWDER SAMPLE

Beno, Soderholm, Capone, Hinks, Jorgensen, IKS, Segre, Zheng, Grace • APL 51,57 (1987),

• Nature 327, 310 (1987)

1ST submitted, 1st published

Doping Controls Superconductivity

Two Distinct Regions FILMS ARE REQUIRED

- Sharp Transitions
- Variable Oxygen Content

FILMS

YBa₂Cu₃O₇ and GdBa₂Cu₃O₇ Sputtered Films

E. Fullerton, et al. APL

REFINEMENT

AGREES WITH

BULK STRUCTURE

TO .03 Å

Figure II-6 Gas evolution system used to deplete oxygen from $RBa_2Cu_3O_x$.

Very Reproducible

Figure II-7 Oxygen pressure as a function of temperature curves for different stoichiometries of $YBa_2Cu_3O_x$.⁶ An example pressure - temperature processing path for making a $RBa_2Cu_3O_{6.5}$ film is shown. The letters (A, B, and C) denote stages during the processing treatment.

Figure II-8 Fractional change in c-axis, $\Delta c / c$, as a function of oxygen stoichiometry, x.^{8,9,10}

Experimental Setup

Bandpass Filters:

250-900 nm (4.8-1.4 eV) 10 nm Bandwidth 0.04-5 mW/cm²

Intensity at Sample:

Transport Measurements 4-point resistance, Hall measurements

$GdBa_2Cu_3O_{7-\delta}$: **SURPRISE** x = 6.5 (nominal)

V. Kudinov, 1994?

G. Nieva, E. Osquiguil, J. Guimpel, M. Maenhoudt, B. Wuyts, Y. Bruynseraede, M.B. Maple, and I.K. Schuller, Appl. Phys. Lett. 60, 2159 (1992)

Is it permanent?

J.Hasen, PhD thesis, University of California, San Diego, 1995.

$$R(t) = R(t = \infty) + \Delta R_{\max} e^{-\left(\frac{t}{\tau}\right)^{\beta}}$$

PERSISTENT

HYSTERESIS EXPERIMENT

, What happens in between full saturation and relaxation?

I. Excitation

1. Cool to 95K.

2. Measure R(T).

3. Illuminate for a short time (t_i) .

4. Repeat 2-3 until sample is saturated.

II. Relaxation

1. Raise temperature (≤ 300 K) for a short time (t_i).

2. Cool down to 95K.

3. Measure R(T).

4. Repeat 1-3 until sample is relaxed.

Excitation \neq Relaxation

Thickness Dependence

STRUCTURE 007 Peak

Extremely Challenging

RESULTS

Excitation \neq Relaxation

Independent set of thin films \rightarrow No Effect

$GdBa_2Cu_3O_{6.3}$: Spectral Dependence

T. Endo, A. Hoffmann, J. Santamaría, and I.K. Schuller, Phys. Rev. B, 54 3750 (1996).

GdBa₂Cu₃O_{6.3}: Spectral Dependence

T. Endo, A. Hoffmann, J. Santamaría, and I.K. Schuller, Phys. Rev. B, 54 3750 (1996).

Other Optical Measurements

Dielectric Function

M. K. Kelley, et al., Phys. Rev. B, 38 870 (1989).

< 1.6 eV: Charge Transfer Gap CuO₂ plane

1.6 - 3.2 eV: CuO_2 -plane: $Cu^{2+} 3d + O^{2-} 2p_{x,y} \rightarrow Cu^{2+} 3d_{x^2-y^2}$ 4.1 eV: CuO-chain: Cu¹⁺ $3d_{z^{2}-1} \rightarrow Cu^{1+} 4p_{x,v}$ O(3) plane Cu(2) O(4) **O(1)** chain Cu(1)O(4) С plane Cu(2)dumbbell Cu¹⁺ ▶ b • copper oxygen \bigcirc oxygen vacancy

ReBCO (123 Compounds)

- Resistance *R*
- T_c 7
- Hall coefficient R_H ****
- Hall mobility μ 7
- *c*-axis

Penetration of light

Only 123 ???

Oxygen deficiency or depressed superconductivity ???

$TI_{2}Ba_{2}CuO_{6+\delta}$

- Simple Structure
 - -Tetragonal
 - -One CuO₂ plane / unit cell
 - -No CuO-chains
- *T_c*: 0-90 K
 - -By Vacuum or Oxygen annealing
 - -Overdoped

RESISTIVITY

HALL EFFECT

Increased n

$TI_2Ba_2CuO_{6+\delta}$: t Dependence

 $T_c = 14 \text{ K}, T = 30 \text{ K}$

$TI_{2}Ba_{2}CuO_{6+\delta}: Spectral \\ \underset{T_{c}=14 \text{ K}, T=30 \text{ K}}{Dependence}$

- Onset at 1.3 eV
- Two different levels for $\Delta \rho$
- ⇒ Two different kinds of localized states
 - Potential Candidates
 - Cu for TI substitution
 - Interstitial Oxygen

Conclusion

- $GdBa_2Cu_3O_{7-\delta}$
 - Illumination: increases carrier density
 - Photoinduced Effects are persistent at low T
 - Spectral Dependence shows Enhancement at 4.1 eV
 Electron trapping at oxygen vacancy in CuO chain
- $TI_2Ba_2CuO_{6+\delta}$
 - Illumination: increase or decrease carrier density
 - Reversible with IR-quenching even at low T
 - Persistent Photoconductivity without CuO chains
 Mechanism is purely electronic

number of carriers

Is it the Oxygen deficiency or the reduced T_c ?

Pr doping

Figure III-8 Resistivity as a function of temperature for several strips of $Pr_yY_{1-y}Ba_2Cu_3O_7$ with varying Pr substitution, before and after illumination.

Figure III-9 Resistivity as a function of temperature for several strips of $Pr_yY_{1-y}Ba_2Cu_3O_{6.7}$ with varying Pr substitution, before and after illumination.⁶

Illumination⇒electron-hole pair⇒electron trapped at oxygen vacancy⇒hole increases conductivity

© Consistent with ALL observed persistent photoinduced effects

A. Gilabert, A. Hoffmann, M.G. Medici, and I.K. Schuller, J. Super. 13, 1 (2000)

Josephson Effect YBa₂Cu₃O₇, T = 12K

J. Hasen, D. Lederman, I.K. Schuller, V. Kudinov, M. Maenhoudt, and Y. Bruynseraede, Phys. Rev B **51**, 1342 (1995)

Fraunhofer Pattern

Photon Dose Dependence I = 5K

IcRn increases \Rightarrow weak link more superconducting

IcRn tunable with photon dose

Fiske Resonance

Fiske Resonance Theoretical Model

Fiske resonance:

$$V = \Phi_0 \frac{c}{2W} \qquad \text{with} \qquad \qquad$$

$$c = c_0 \sqrt{\frac{t}{\epsilon(2\lambda + t)}}$$

(Swihart velocity) \Rightarrow

$$\frac{\varepsilon}{\varepsilon_{\rm L}} = \left(\frac{V_{\rm L}}{V}\right)^2 \approx 2$$

Interfacially Controlled Transient Photoinduced Superconductivity in Magnetic-Superconducting Hybrids

Vanessa Peña, Thomas Gredig, Ivan K. Schuller, Jacobo Santamaría PRL 2007

MAGNETIC-SUPERCONDUCTING HYBRID

Black: fully oxygenated YBCO Blue: deoxygenated YBCO

Effect of LCMO

Time Dependence "FAST"

LCMO / YBCO_{6.7} 12 u.c./STO

CONCLUSIONS

• Photodoping-

Convenient way to tune doping !

• Photodoping-

General feature of Complex Oxides !

 Spatial Separation at the Nanoscale

Superconducting-Nonsuperconducting

 Transport controlled by Cuprate Relaxation time controlled by Manganite

Outlook

Future looks bright for Persistent Photodoping in Oxides!

POLITICALLY INCORRECT

- What is on firm footing that everybody agrees ?
- How to judge the "correct experiments" ?
- How to judge the correct theory ? (Predictions, least number of assumptions,...
- Are inhomogeneities present at short length scales, even in "very good" samples ?
- Is d-wave well established ?
- Is 2-dimensionality needed ?
- Are there more than one mechanisms possible ?
- Are they real ?
- a) WOx high Tc
- b) RuSr2(Gd, Eu, Sm)Cu2O8, F-S at 58 K
- Why are the stocks of Superconducting companies going to hell ?

OPEN YOUR MIND !!!!

